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Figure 1: Generative Terrain Authoring with Mid-air Hand Sketching in Virtual Reality: a. Users can sketch terrain outlines
using pinch gesture. b. Users can modify the sketch. c-e. The system can generate different types of terrain: summits, ridges,
canyons, and mesa. f. User study participants can generate high-quality results with our system in a short time. g-j. Different
drawing modes: g. Draw a volcano with a non-filled drawing. i. The saved result of the volcano in g. h. Draw a mesa with
filled-polygon mode. j. The saved results of the mesa in h.

ABSTRACT
Terrain generation and authoring in Virtual Reality (VR) offers
unique benefits, including 360-degree views, improved spatial per-
ception, immersive and intuitive design experience and natural
input modalities. Yet even in VR it can be challenging to integrate
natural input modalities, preserve artistic controls and lower the
effort of landscape prototyping. To tackle these challenges, we
present our VR-based terrain generation and authoring system,
which utilizes hand tracking and a generative model to allow users
to quickly prototype natural landscapes, such as mountains, mesas,
canyons and volcanoes. Via positional hand tracking and hand ges-
ture detection, users can use their hands to draw mid-air strokes
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to indicate desired shapes for the landscapes. A Conditional Gen-
erative Adversarial Network trained by using real-world terrains
and their height maps then helps to generate a realistic landscape
which combines features of training data and the mid-air strokes.
In addition, users can use their hands to further manipulate their
mid-air strokes to edit the landscapes. In this paper, we explore this
design space and present various scenarios of terrain generation.
Additionally, we evaluate our system across a diverse user base
that varies in VR experience and professional background. The
study results indicate that our system is feasible, user-friendly and
capable of fast prototyping.

CCS CONCEPTS
•Human-centered computing→ Virtual reality; • Comput-
ing methodologies → Parametric curve and surface models;
Machine learning approaches.
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1 INTRODUCTION
Terrain authoring, including terrain generation and editing, is the
interactive process of shaping and customizing virtual landscapes
in a digital space. Terrain generation involves the creation of virtual
landscapes by simulating geographic features such as mountains,
canyons, volcanoes and mesas. Modern Virtual Reality (VR) plat-
forms, which combine advanced technologies such as hand-tracking
and speech input alongside stereo displays, provide unique benefits
for terrain authoring, particularly in the context of design, visu-
alization, and interaction. It has been decades since researchers
started exploring VR-based spatial interfaces for digital content ma-
nipulation and CAD (computer-aided design) modeling [4, 29, 41].
For example, they have used gesture interfaces (mostly achieved
by glove-based hand-tracking systems) to replace traditional input
(keyboard, mouse, tablet, etc.) [4, 29, 41]. VR platforms inherently
empower users with the ability to use spatial and natural interfaces,
such as hand tracking, controller tracking, speech input, etc. In
addition to new input modalities, VR can benefit perception when
authoring terrains. Users can observe models from desired points of
view by simply moving their head. This dynamic perspective shift
enhances spatial awareness by improving users’ perception of scale
and spatial relationships between segments. As a result, VR can
potentially transform the design process. Users can immersively
create, edit, navigate and experience virtual landscapes as if those
landscapes were physically present, which can help to maintain a
comprehensive understanding of the landscapes on the fly. Addi-
tionally, designing and building terrains in VR provides a unique
benefit if the terrains are intended for a VR experience: Design-
ers can immerse themselves into their target user’s perspective,
facilitating a more user-centered design approach.

Yet fast prototyping, terrain fidelity and user-friendly interfaces
continue to pose challenges. Landscapes often have diverse fea-
tures, making it inherently complex to generate realistic terrains
while achieving an intended aesthetic style. To mitigate these issues,
we present a VR-based terrain authoring system which incorpo-
rates CGAN as a generative terrain synthesizer, allowing users to
immersively, rapidly and easily prototype terrains using intuitive
interactive hand controls.

Our system integrates the VR platform’s build-in hand tracking
and gesture recognition functions as its primary input modality.
The hand tracking sub-system uses pinching as the action trig-
ger and then tracks the pinch point for mid-air stroke drawing in
VR. Similar to prior work [4, 29], we integrate pinch to facilitate
direct freehand manipulations with rich controls such as pinch-
to-select and two-handed scaling. Our exploration extends to the
design space of the hand interface, which provides a comprehensive
demonstration of all supported interactions across various terrain
generation scenarios. A mid-air stroke, representing the 3D con-
tours of the terrain, captures both horizontal layout and height
variations. This helps the system to efficiently generate terrains

that match the user-specified height and shape, without the need for
extensive adjustments to elevation required by most other terrain
generation tools [10, 11]. The generative model for terrain genera-
tion is a CGAN module trained on pairs of real-world terrains and
their corresponding height maps. The module synthesizes height
information extracted from the user’s mid-air strokes to generate a
realistic landscape that reflects the user’s creative intent and aligns
with the patterns and features learned from the training dataset.
Notice that due to the technical immaturity of Machine Learning-
powered 3D voxel content generation, despite utilizing 3D input
in VR space, our system still generates a 2D result, which is then
interpreted as the height data to be used for the generation of the
3D terrain. In this way we can generate any single-valued terrain,
but not multiple-valued terrains such as caves.

In summary, our work makes the following contributions:
(1) A novel contour sketching interface that leverages VR plat-

forms’ built-in hand-tracking and gesture recognition to
draw the mid-air 3D contours of desired terrains and control
editing, enabling the terrain synthesizer to estimate and gen-
erate a target terrain that matches the sketched 3D outline.

(2) An algorithm embedded in the terrain synthesizer that dy-
namically adapts the user-desired terrain 3D outlines and
characteristics to the deformation process of the terrain,
which overcomes the problems encountered in previous ap-
proaches.

(3) Designing and implementing the terrain authoring pipeline
that integrates the above user interfaces into CGAN terrain
synthesizers. Synthetic noise is added in post-processing
to achieve more realistic results. In addition, we conduct
preliminary studies to evaluate the effects of added noise
and demonstrate the proof of concept.

2 RELATEDWORK
As outlined in the survey by Galin et al. [9], Terrain generation
techniques can be broadly classified into three technical approaches:
procedural modeling, geomorphological simulation, and example-
based generation. Procedural approaches incorporate algorithms,
such as noise functions [26, 27], faulting [18, 36], and subdivision
[6, 20], to mimic natural landscapes. Geomorphological simulation
emulates the physical processes that contribute to the formation and
transformation of geographical features [21, 28, 30]. Example-based
generation synthesizes landscapes by relying on scanned real-world
terrain data sets and often leveraging data-driven methods. Ac-
cording to this classification, our work employs an example-based
method with a real-world terrain data set and a generative model.
However, our work also concentrates on delivering an immersive
experience, facilitating fast prototyping, and emphasizing the es-
sential interactions necessary for seamlessly integrating natural
hand control into terrain authoring.

2.1 Sketch-based Terrain Generation
Sketch-based terrain generation leverages the intuitive nature of
sketching and transforms sketch elements such as contours, lines
and shapes into detailed and realistic 3D terrains. Previous ap-
proaches have often revolved around 2D user interfaces using flat
screens, mice and keyboards, and 2D or 2D-like input modalities
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in which users edit altitude cues on terrain surfaces in a view-
dependent manner, akin to traditional CAD-style (Computer-Aided
Design) interfaces [12, 31, 34, 35, 39]. For example, Guérin et al.
[10, 11] proposed two pipelines that allow users to sketch on the
terrain surface to generate an initial coarse terrain, while providing
various interactive painting brushes for additional height adjust-
ments. Therefore, users might need to perform a number of refine-
ment operations for diversified level sets. Cohen et al. [3] presented
their system Harold which creates 3D terrains by projecting 2D
silhouette strokes from screen space into 3D curves from a side
view. The corresponding terrain is procedurally generated to fit sil-
houette curves. Gain et al. [7] added to this silhouette approach an
improved procedural generation and terrain footprint estimation.
In these silhouette approaches, users can directly provide height
cues for the intended terrain without incremental level-by-level
refinement, but the viewpoint needs to remain fixed as users draw
the silhouette since the method projects the silhouette onto a verti-
cal plane and therefore needs to ensure a stable projection while
sketching. These methods are therefore inherently 2D or 2D-like
approaches.

Several prior works have investigated using handheld controllers
for sketching in VR [1, 38, 39]. Additionally, some researchers have
explored integrating hand-tracking into their sketching interfaces
for immersive 3D modeling by using either camera-based hand-
tracking or wearable tracking devices[5, 15, 19, 25, 33]. Specifically,
Wong et al. [37] presented their VR-based 3D object and terrain
editing System with AI assistance. The system seems to be a VR
version of the work presented by Guérin et al. [10]. While these
systems have demonstrated innovative approaches to enhancing
user interaction for immersive systems, none of them has specif-
ically focused on terrain generation, and most of them achieve
3D modeling by utilizing "Teddy"-like [13] techniques, using 2D
sketching or 2D sketches projected from 3D sketching.

In contrast, our work fully utilizes the benefits of spatial inter-
faces and releases the power of free-hand drawing. Users can draw
free-form mid-air strokes in VR from any position and any viewing
angle, to effectively communicate elevation and terrain contour
lines through 3D sketching.

2.2 Data-driven Terrain Generation
Data-driven methods informed by real-world data sets can closely
mimic actual landscapes. These methods are adaptable to user pref-
erences as they integrate with diverse data sources containing
specific terrain features. For instance, Zhou et al. [42] introduced
a system that creates terrains by merging user-sketched feature
maps and height fields to synthesize patches sampled from data
sets. With recent significant advancements in machine learning,
the use of generative models has become one of the dominant
techniques for terrain generation. These models, such as GANs
[2, 10, 11, 22, 23, 32, 40], and diffusion models [17], can rapidly
generate complex, coherent and realistic terrain patterns. Gain et
al. [8] interactively generated terrains from a height field data set
using parallel pixel-based texture synthesis. Guérin et al. [10, 11]
integrated CGAN with interactive sketching interfaces to enable
authoring of various terrain types and features. Perche et al. [24]
generated terrain with different styles using improved StyleGAN2
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Figure 2: Interaction Design for Pinch-based Terrain Autho-
rization. This chart shows how different pinch variables are
combined to create different terrain authoring functions.

architecture. Lochner et al. [17] adapted diffusion models to im-
prove landform variety and fidelity. Our work also uses CGAN
conditioned on heightmaps. The height maps are converted from
mid-air strokes, with Perlin Noise [26] added prior to the CGAN
process.

2.3 Terrain Generation in Virtual Reality
VR inherently has the potential to make full use of spatial user
interfaces. Modern VR platforms not only provide stereo views and
spatial audio, but also offer untethered solutions with fewer space
constraints and advanced functionalities such as hand tracking, ges-
ture recognition and speech recognition. Prior work investigating
the use of VR and gesture interfaces for CAD modeling and virtual
content manipulation dates back to the late 90s [4, 41]. Zheng et
al. presented a VR-based user interface for CAD modeling that
used a glove with sensors for hand tracking and gesture detec-
tion and a graphical user interface for controls [41]. Coninx et al.
demonstrated a hybrid 2D /3D user interface in VR with pinch-
gesture-based interaction involved [4]. Pfeuffer et al. explored VR-
based interactions combining gaze and freehand gestures such as
targeting by gaze and manipulation by pinch [29]. Our work also
uses hand tracking and a freehand gesture interface for combining
sketch input and a control trigger. However, the focus of our work
is to explore the possibilities of a freehand interface that can lets
users use simple mid-air sketches for fast terrain prototyping.

3 SYSTEM DESIGN
Our objective is to design data-driven terrain authoring tools that
use natural input modalities in VR for simple and fast 3D terrain
prototyping. Our emphasis is on preserving artistic control while
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lowering effort, to create an intuitive and immersive terrain autho-
rization experience.

Based on these goals, we propose a pinch-based VR terrain au-
thoring system that harnesses users’ inherent understanding of
3D space to create and manipulate terrains by using hand gestures
to draw contours or filled regions. The system then automatically
generates realistic terrains. Users can further refine the terrain by
pinching to edit shape, position and slope. In the following sections
we elaborate on the pinch variables (the basic design component for
our gesture interface), visual representation, and terrain authoring
design.

3.1 Pinch Variables
The foundation of our interaction model is the pinch gesture. Pinch-
ing was selected because it is one of the most common gestures
used for VR user interface design (e.g., Apple Vision Pro and Meta
Quest’s user interfaces both use pinch for item selection) and it can
be reliably detected by most VR platforms (e.g., Unity has built-in
pinch recognition). We explore various variables of this gesture, in-
cluding different pinch actions, different pinch places, and different
pinch hands. We combine different pinch gestures to enable various
terrain authoring functions. This approach allows for a simple user
interface that is easy to learn and fast to use. We classify pinch
gestures as follows:

Pinch Actions. Our system recognizes different actions by vary-
ing the duration and frequency of pinching. Single click (pinch and
release) acts as a toggle, which is useful for changing the state of
interaction. For more complex commands, double click (two consec-
utive single clicks) is used for features requiring a higher degree
of user confirmation. Additionally, pinching on interactive visual
elements can be used to define the interaction target. For tasks
requiring continuous input or 3D navigation, such as drawing or
adjusting terrains, pinch and drag is ideal.

Pinch Hands. Our system differentiates between left and right
hand pinching, which enables distinct interactions based onwhether
the left hand, right hand, or both hands are used. Left hand only
clicking is used for functions such as saving or clearing the contour.
Right hand only clicking triggers different actions or mode changes.
Pinching with both hands provides two 3D positions that can be
interpreted as an area selection and modification. This is particu-
larly useful for tasks such as modifying a terrain area. Also, a two
handed pinch can indicate a more complicated modification or state
change that requires more user attention. Moreover, by pinching
the contour with one hand and clicking with the other hand, users
can target specific contours. For example, the user pinches a con-
tour with the right hand and double clicks with the left hand to
delete the contour.

PinchPlaces. Pinching in different places, such as on pre-existing
terrain elements or unoccupied space, helps the system to auto-
matically interpret whether the user intends to edit the current
terrain or engage in different interactions. Pinching in empty spaces
without any pre-existing contours prompts the system to initiate
new terrain creation or activate other distinct functionalities. This
enables users to seamlessly transition between editing existing fea-
tures and creating new terrain elements. Conversely, when a user

pinches on existing contours or editable elements of the terrain, the
system interprets this as an intent to modify or refine those terrain
features. This allows for precise and targeted adjustments to terrain
structures.

3.2 Visual Representation
Our system lets users create and modify the terrain’s outlines,
change its slope’s shape and angle, and switch between creating a
ridge, mesa, or canyon. We visualize this information as follows:

Visualization for Terrain Outline. In our system, the terrain
outline is displayed as solid red lines. Due to our data-driven ap-
proach to generating realistic terrain, the actual terrain does not
precisely align with the user-drawn outline, potentially causing
the generated terrain to partially obscure the outline. To prevent
confusion and ensure clear visibility, we render these red outlines
to always appear above the 3D terrain layer. This approach guaran-
tees that the outlines always remain visible to the user, even if the
terrain mesh occludes them.

Visualization for Drawing Ridge, Canyon, and Mesa. Users
can create ridges or canyons by drawing non-filled lines above or
below ground level. To facilitate this, we represent ground level as
a semi-transparent plane. The relative position of the user’s hand to
ground level is indicated by a color-coded vertical line, which turns
yellow when the user’s hand is above ground level and changes to
blue when the user’s hand is below ground level.
Users can use a filled polygon tool to create a mesa or flat-topped
mountain rather than just drawing non-filled lines. This is shown
in Figure 1 g-j. When the user switches to filling mode, an icon
resembling a paint bucket appears next to their hand. For visual con-
sistency, the polygon’s outlines are rendered in red. This matches
the color of non-filled contours, ensuring a cohesive appearance
for drawing actions.

Visualization for Slope. As illustrated in Figure 1, we repre-
sent the terrain’s slope using white lines alongside the red terrain
outline. We depict two white lines for landforms such as ridges
and canyons to indicate the two sides of the slope. We render a
single white line for mesas created in the filled polygon mode. This
slope visualization is activated only in terrain edit mode, specifi-
cally when the user pinches a contour, and it appears precisely at
the point of pinching. We adopt this approach because displaying
slope information continuously along the entire contour could lead
to visual clutter. Moreover, users generally require slope details
only when they are actively editing the terrain.

3.3 Terrain Authoring Functions
As shown in Figure 2, different combinations of pinch variables are
applied to different features of the terrain authoring tool. These
features include creating and modifying terrain outlines and slopes,
switching between creation modes, and saving and deleting terrain.
Wewill discuss this mapping in detail in the following section. Users
can create various types of terrains by combining those actions. For
example, a Great Basin-like desert mesa landscape can be created
by using filled polygons and generating contours to define the mesa
edges. Cliffs can be shaped by adjusting the slope lines of a contour
via the edit terrain action.
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Create Terrain Outlines. The user can pinch and drag in an
empty place to draw terrain outlines from their pinching point.
Because users might have different dominant hands, this function
can be triggered using either the right or left hand.

Edit Terrain. Users can adjust existing contours by pinching
and dragging with either hand. For single-point editing, they can
pinch and drag a contour using one hand to change point’s position
in 3D space. To move a line segment on the contour, users can use
one hand to pinch and drag the segment’s starting point, while
using the other hand to pinch and drag the ending point. This dual-
hand approach is particularly useful for more involved tasks, such
as repositioning an entire mountain or adjusting the elevation of a
large terrain area.

Users can also modify the steepness and shape of slopes. As
noted earlier, if the user pinches an existing contour with one hand,
the slope line will be displayed as white lines intersecting the user’s
contours at the pinched point. The user can then use their other
hand to adjust these slope lines, reshaping the slope by pinching and
dragging points along the white lines. They can modify the slope’s
steepness by gripping the endpoint of the white line and moving it
up or down, which rotates the entire white line, altering the angle
between the slope lines and the corresponding red contour, thus
changing the slope’s steepness.

Switch Drawing Mode. Our system offers two distinct drawing
modes: non-filled lines and filled polygons. Users can utilize non-
filled lines to represent ridges when drawn above ground level or
to form canyons if drawn below ground level. Drawing a filled
polygon allows users to create a surface suitable for designing
mesas or basins. To switch between these drawing modes, users
simply need to do a single click action as it is shown in Figure2
with their right hand.

Save Terrain. If users are satisfied with the current terrain and
don’t require further modifications, they can specify which con-
tour to save by pinching the contour with their right hand while
single-clicking with their left hand in the empty place. Users can
also save the entire terrain by via a single left hand click in the
empty place. This action is particularly beneficial as it prevents
unnecessary re-computation of the terrain, thereby enhancing the
system’s performance. Additionally, when users save the terrain, its
corresponding red contours will vanish. This helps to tidy up the in-
terface, reducing visual clutter and minimizing potential confusion
as to which parts of the terrain are editable for the user.

Delete Terrain. If a user wishes to remove a specific contour,
they can pinch it with their right hand while simultaneously double-
clicking in an empty place with their left hand. Similarly, they can
double-click with the left hand in an empty place to clear the entire
terrain. We use a double-click pinch action to minimize the risk of
inadvertently activating the delete function. This method serves as
a confirmation step, ensuring that users intentionally commit to
such significant actions.

4 IMPLEMENTATION
In general, our system generates terrains via two steps: terrain
synthesis from user input, and terrain post-processing.

...

User’s Strokes Raw Heightmap Perlin

Noise

Realistic Heightmap

Raw Terrain

Realistic Terrain CGAN

Figure 3: System pipeline.

The system collects user pinch positions, and uses this data
to procedurally synthesize the terrain height map. The system
interprets the height map data as a 256 × 256 gray scale image, with
each pixel value representing normalized height at that location on
the height map. To add realistic details on the generated height map,
a conditional GAN (i.e. 𝑃𝑖𝑥2𝑃𝑖𝑥 [14]) performs image-to-image
translation and synthesizes a height map image that incorporates
features trained from actual terrain from satellite images. Using
this synthesized realistic height map, the system then translates
the gray scale value of each pixel to its corresponding elevation
during generation of the 3D terrain.

Our system uses Unity3D for VR integration and terrain ren-
dering. In addition, we incorporate a procedural texture module to
dynamically generate textures based on terrain height and gradient.
This helps display a natural and visually appealing representation
of the terrain, but is not the primary focus of our system.

4.1 User Interface
Our system integrates the Oculus Interaction SDK package in Unity
3D with built-in features in the Meta Quest 3, which is our main
platform for tests and study, to enable hand tracking for VR. Lever-
aging the Quest 3’s camera-based hand-tracking, the SDK provides
essential hand tracking functionality, including position and ori-
entation tracking of hands, configuration tracking of fingers, and
hand gesture recognition. The system recognizes pinch gestures
and records their positions to construct and edit contours.
For editing, the system uses linear interpolation to diffuse the
change at a single point to the rest of the unedited section. When
editing with both hands as mentioned in previous section, the seg-
ment between both hands is unaffected by the interpolation. Rather,
the two hands serve as the anchor to transform the segment. The
visualization of this process is described in Figure 4.

Users can also edit the slopes on both sides of ridges by manipu-
lating the slope line that controls terrain steepness. The result is
then stored in the contour and is further used in later steps.

4.2 Terrain Synthesis
4.2.1 Synthesis Method. In traditional terrain authoring applica-
tions like the in-editor terrain tools for Unity and Unreal, terrain
is stored as a 2D array of floats representing the height at each
corresponding vertex, and is usually deformed by applying a brush
mask onto the terrain based on user’s input. The brush mask is an
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...

...

θ

Figure 4: Visualization of modifying contour with both
hands.

RGBA image kernel with embedded alpha information. By painting
alpha values of the mask brush onto the terrain 2D array, the terrain
is deformed.

We use a similar approach to this brush mask-based terrain
reconstruction method by marching over each point on the 3D
contour and applying the brush deformation based on the elevation
of the points. Previous brush mask methods usually used only
one uniform instance of the brush kernel, which made it hard to
reconstruct diversified terrain characteristics, such as when the two
sides of a mountain range have different slope steepness, or when
there is a sharp cliff drop along the mountain range. The failure
case of a steep drop-off is shown in Figure 5.

Gain et al. [7] used a sketching algorithm that maps the contour
to a vertical plane as the silhouette and computes the boundary of
the contour to generate 3D terrain. However, their algorithm places
constraints on both silhouette and boundary. For example, the sil-
houette and the boundary may not fold back on or intersect itself.
This solution is not suitable for our system, which emphasizes fast
prototyping and using fewer interactions to create plausible results.
Moreover, in VR-based sketching, users in have more freedom of
movement compared to the traditional 2D interface. This freedom
of control can lead to unstable sketches and irregular strokes when
drawing in mid-air. To tackle this problem, we enhanced the tradi-
tional brush mask-based method by changing the alpha values of
the brush mask along each vertex on the contour based on slope
steepness and the contour gradient. The default brush kernel is
defined by

𝑎𝑥,𝑦 = 𝑎0 (1 −
√︃
(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2) (1)

Whereas 𝑎𝑥,𝑦 is the value stored on (𝑥,𝑦), 𝑎0 is the largest kernel
value, and (𝑥0, 𝑦0) is the kernel center. Then, based on the contour
steepness and gradient, we adjust the kernel values to match the
overall shape of the terrain that the user desires.

Figure 7 demonstrates two examples from the result of our terrain
reconstruction approach. Our reconstruction method can preserve
the abrupt slope variations that might be smoothed out in [7].

4.2.2 Post-processing with CGAN. 𝑃𝑖𝑥2𝑃𝑖𝑥 is a conditional Gen-
erative Adversarial Network designed for image translation [14].
We chose this model due to its capability in translating abstract
height maps into realistic ones. Our workflow starts with the origi-
nal height map and aims to obtain a more detailed height map that
can closely resemble a real-life height map, which often contains
erosion effects.

...

Figure 5: A potential failure case caused by the uniform brush
mask overwriting the steep drop-off, which is colored in blue
in this figure. Failure cases similar to this case is resolved by
adjusting the brush mask per vertex on the contour.

cliff side

brush

stroke from 

top-down view

transform brush 
shape to fit to 

user-defined slope

Figure 6: Visualization of adjusting the brush mask to create
cliff on one side of the slopes. Notice that the brush alpha
has been reversed for better visual representation, in which
the darker area stands for higher alpha values.

Figure 7: (a) An example cliff reconstructed by our approach.
(b) A complex terrain example constructed by our approach
preserves the sharp slope drops.

We train our synthesizer using the architecture outlined in
𝑃𝑖𝑥2𝑃𝑖𝑥 . For optimal performance, both input and output sizes are
set to 256× 256× 3 and batch size is 32. We choose a low resolution
for the purpose of fast iteration during system development.

We process the original height map using a level set represen-
tation. The 𝑃𝑖𝑥2𝑃𝑖𝑥 model is trained to translate the level sets to
the satellite height map images. The method of synthesizing a real-
istic terrain from level set input is described in [10] and is further
elaborated by [22]. Consistent with the trained data set, the height
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map deformed and gathered from the previous section will also be
processed as a level set representation.

To gather terrain satellite images in real life, we use the Earth
Engine API by Google, gathering 10000 height maps randomly
cropped from 10 regions chosen based on the criteria of minimal
human architecture, high quality satellite height map images, and
diversity of geographical characteristics, from the NASA Shuttle
Radar Topography Mission data set provided by the United States
Geological Survey. After 10000 satellite height map images are
sampled and converted to the unified resolution of 256 × 256 to
align with the input and output sizes of the model, we apply the
level set quantization on the samples and constructed the data set
for training the model with the level set representation as input,
and the corresponding satellite height map image as ground truth.

4.2.3 Effects of the added noise. After training the model with
the data set that uses the level set representation of the height
map as input, we process the height map deformed in the previous
section to mimic the level set to get the corresponding output by
the trained model, using the 𝐹𝑙𝑜𝑜𝑟 function by slicing down the
pixel values from the image of the raw height map to discrete levels.
An additional noise layer is added before we floor the images of raw
height map to level sets, as we find that the erosion effect exhibited
by the level sets representation resembles the effect of Perlin Noise
[26]. By adding Perlin Noise onto the original height map using an
alpha mask, we can mimic and control erosion effects in our level
set representation of the raw height map, and thus control the input
of the 𝑃𝑖𝑥2𝑃𝑖𝑥 model and the strength of the natural erosion effect
on the output, which solves the problem presented by previous
work [10], in which the user study suggests that users would like a
tool that allows them to freely control erosion strength to produce
a smooth slope. Figure 8 demonstrates the preliminary study we
have conducted to compare two different results from the same
Pix2Pix model, with one of the inputs applying noise to produce
an erosion effect.

By training the 𝑃𝑖𝑥2𝑃𝑖𝑥 model with the input of the level sets
representation of the satellite height map, and the output of the
unprocessed height map, we can use the model to translate raw
Height maps to realistic height maps that resemble the actual height
maps in our dataset. The 𝑃𝑖𝑥2𝑃𝑖𝑥 model in our system is optimized
by Unity Barracuda Plugin. With Intel i9-12900KF 3.20 GHz CPU,
32GB RAM and Nvidia 3090 GPU, the average computational time
for a 256 × 256 height map to generate in our system is 2.45 seconds.
This result reflects the computation time for height map generation
only. Other computation modules such as rendering run in parallel,
and their computational costs are trivial.

5 USER STUDY
Given that our system is one of the first VR-based Terrain Author-
ing Tools, our initial focus is to conduct a feasibility study without
a baseline. We evaluate our system with the “usage evaluation”
approach as described in Ledo et al.’s HCI toolkit evaluation frame-
work [16]. The methodology helps gather insights about the user
experience by investigating the clarity of design concepts, ease of
use and significance. Specifically, we aim to gather their feedback
and understand whether users could efficiently and easily use our
VR terrain authoring system to create various types of terrain. For

Figure 8: Examples of the use of Perlin Noise on the input.
The input on the upper section produces a smooth terrain,
the input on the lower section, adding an additional Perlin
Noise layer, produces a rough terrain with erosion

this purpose, we ask participants to create three distinct types of ter-
rain. Additionally, we provide them with the opportunity to freely
explore and create any terrain with the system. At the end, we have
an interview with the users and collect their feedback through a
customized questionnaire and open-ended questions.

5.1 Experimental Setup
Our study uses Oculus Quest 3 for VR display and hand tracking.We
use Oculus Quest’s Quest Link mode to run our system in Unity3D
2022.3.11f1 on the same PC we have mentioned in section 4.2.3.
Each study takes around 40 minutes. We provide each participant
with a $15 gift card if they complete the study.

5.2 Participants
We recruited 8 participants including 4 males and 4 females, age
range 21-24 (mean 22.88, SD=1.36) from our local community. The
participants have diverse backgrounds including expertise in 3D
art, interactive media art, game design, computer science, film, and
more. Their experiences with VR range from first-time users to
daily VR users.

5.3 Study Protocol
Upon arrival, each participant is required to provide consent to
participate in the study and agree to audio recording during the
post-session interview. Then, we give them a brief introduction
to our system. For the next stage, they watch a 2-minute tutorial
video in which one of our developers demonstrates the features of
our system for terrain authorization. This demonstration includes
terrain creation and editing, switching between different terrain
drawing modes (the surface filling mode and the stroke mode),
saving, and deletion. After watching the tutorial video, they will
have 5 minutes to get themselves familiar with the features they
learned.

The study has two sessions: replication session and free explo-
ration session. The replication session has 3 replication tasks in a
shuffled order. Each task requires participants to create one of the
three different terrain types: ridge, volcano, and canyon. During
the task, the system displays an image of the corresponding terrain
type, and participants have a maximum of 3 minutes to finish the
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replication. The participants are informed to create a terrain that
they believe closely resembles the one in the picture and try to
finish the task as fast as they can if it is possible. Participants have
the option to inform the experimenters to stop the time counting
when they are satisfied with their creation within the 3-minute
limit. During this process, the experimenters count the time to
complete; the system records hand positions, the time of pinching
and release, and the number of actions they perform.

To further understand the user experience, there is a free ex-
ploration session after the replication session. In this session, par-
ticipants have 5 minutes to create anything they desire, with no
restrictions on the types or quantity of terrain. They also have the
flexibility to conclude the task at any point if they are satisfied with
the results.

5.4 User Feedback Collection
After the sessions, the experimenters ask them to fill out a cus-
tomized 5-point Likert scale about the level of ease-to-use, their
preference for each system feature, and satisfaction with the results.
At the end, there is a short interview with open-ended questions
for their insights on the hand input interface, overall experience,
limitations, and what features they expect the system to have in
the future. In addition, we logged user behavioral data, such as
timestamps for each task and action, hand usages, and positions, to
provide objective behavioral evidence for the user’s experience of
the tool. All data was obtained with user consent.

Figure 9: User study results on system’s ease to understand.

5.5 Study Analysis
Result. We analyzed the study results from 8 participants. We

conducted descriptive analysis for questionnaires and user log data
and derived themes from interviews. All data sources based on
both users’ subjective self-reports and objective behavioral evi-
dence were triangulated to provide an in-depth understanding of
the system’s efficiency, usability, ease of use, and strengths in 3D
environments. By analyzing the data collected from the user study,
we found that 19 out of 21 tasks were finished on time. For sketch-
ing a ridge, the average time used was 1 minute and 47 seconds
with a standard deviation of 63.5 seconds; no participant failed to
finish the task. For the task of sketching a volcano, the average time
used was 1 minute and 36 seconds with a standard deviation of
45.33; 2 participants were unable to finish the task. For the task of
sketching a canyon, it was 1 minute and 23 seconds with a standard
deviation of 32.44, no participant failed to finish the task.

In terms of actions taken, the average number of actions to finish
all three tasks is 162.5, with a standard deviation of 104.96. The
average action of sketching is 65.83 with a standard deviation of
50.23, and the average action of modifying is 96.66 with a standard
deviation of 55.54. The average time of a sketching action is 2.09
seconds with a standard deviation of 0.77 second; The average time
of a modification action is 1.12 seconds with a standard deviation of
0.94 seconds. The statistics show that users generally tend to take
more actions on modifying the terrain than creating the sketch,
however, they tend to spend more time on a single action of sketch-
ing than that of editing. The total average time users have spent on
sketching in a session is 137.58 seconds, compared to 108.26 seconds
of time spent on editing, which demonstrates that users tend to
take more time on the sketching, but a lot more small adjustments
are added after the sketchings are done.

Usability. The interview shows that the system’s features were
generally adequate for terrain creation. In the questionnaire, half
of the participants agreed that our system covers all the necessary
tools for basic terrain prototyping. Participants liked the simple and
intuitive pinching gesture for terrain authoring. 7 of the participants
strongly agreed that the interaction design is efficient while not
overwhelming (with 5 of them strongly agreeing on this), and 1
participant held a neutral attitude. The ability to quickly prototype
terrains was highlighted by participants as a significant advantage.
As P1 pointed out, the system can help users generate VR terrains
directly in VR space within minutes, and the generated terrains
seem to be realistic and of high quality. The slope function was
praised by P2, P6, and P7, as the function supports more control
over terrain shapes. Based on the questionnaire results, half of
the participants agree that the system’s outputs resemble what
they have in mind, and the other half neither agree nor disagree.
This might be because our system uses a data-driven method to
generate realistic terrain, so the generation results might not fit
the participants’ drawing, especially if the intended terrain in their
minds is unrealistic.

However, participants mentioned that they would expect addi-
tional features like curve editing, undo functions, and improved
visualization for slope editing. There could be further improve-
ments in the visualization as well. For example, P7 mentioned that
sometimes the visual cue of the slope in collided with their hand,
making it hard to modify.

Easy to Learn. Based on the questionnaire results, all the par-
ticipants agreed that they think they can master all the functions
within a few minutes in the tutorial session (with 5 of them strongly
agreeing on this), indicating a shallow learning curve. The min-
imalist interface design was appreciated for its focus on terrain
creation without distractions (P2, P3, P5). P4 mentioned that they
were scared by the complicated interface of traditional modeling
systems, but they are confident in using our system to create what
they have in their mind. P6 thinks our system is playful and enjoy-
able because they don’t need to pay much effort to remember how
to use each function, and they can put all their attention into the
design process.

The interview shows that the pinch-based actions were found to
be easy to understand and use by all the participants. Using pinch
gestures to create and modify the terrain was intuitive, mirroring
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actions in physical life (P3, P4), like "how pinching and dragging a
rope in real life" (P4).

However, some participants accidentally triggered the pinching
actions when they were unconscious about their hands. The sys-
tem occasionally confused drawing actions and editing actions. P7
suggested using different gestures for stroke creation and editing
to avoid undesired triggers.

As shown in Figure 9, participants found most of the functions
easy to learn, and the visual cue was clear. Some participants found
the slope editing function is not easy to use because sometimes they
cannot pinch accurately onto the slope line, making it hard to use.
This is because they cannot correctly determine the relative position
of their hands and the lines. P4mentioned that it is difficult to have
a precise spatial sense when doing 3D sketching. For example,
they were having a hard time drawing a closed circle because it is
challenging to keep the circle’s starting point and the ending point
at the same height. P3 mentioned the same issue and suggested
adding visual cues for spatial relationships between the hand and
the strokes to enhance precision in 3D space.

Benefits of Terrain Authoring in VR. The immersive VR ex-
perience supports a first-person immersive view; therefore, it can
help users get a better understanding of the terrain (P2, P7). For
example, it is easier and more intuitive for the participants to check
the terrain from different angles in real-time by physically moving
their bodies and rotating their heads while their position and view-
ing perspective in the virtual space are dynamically synced up with
their motions (P0). Compared to traditional CAD-like interfaces,
users don’t have to use 2D user interfaces for 3D content by viewing
from different viewports or interacting with a 2D screen, mouse,
and keyboard (P4). This is particularly valuable in design processes
for environments like stages and gardens, where designers can
immersively experience the terrain from their end-users’ perspec-
tive (P0, P2). By eliminating the potential detachment imposed by
traditional 2D or 2D-like user interfaces, designers can immerse
themselves in the spatial context, facilitating a more empathetic
and user-centric design approach. Therefore, it could ultimately
enhance the quality and user experience of the designed environ-
ments. In summary, the system was well-received for its usability in
terrain creation, ease of use, and fast prototyping. The immersive ex-
perience and intuitive hand gestures were key strengths, although
there were suggestions for additional features and improvements
in precision and control.

6 DISCUSSION
For users who want to make the terrains with different types of
characteristics, they need to train separate synthesizers. The rea-
son behind it is that sketching is an abstract input method that
could represent different features in different contexts. Separate
CGAN synthesizers could interpret sketches to elicit more accurate
characteristics for each terrain type. As a result, the same sketch
could be interpreted as different landform styles depending on the
user’s intention. A potential drawback of our approach is that it
requires effort to train different synthesizers with different datasets
separately, therefore, it would be impossible for our pipeline to
seamlessly generate the terrain for various landform styles with-
out selecting from different synthesizers. In the future, we will try

diffusion models [17] and other GAN-based techniques such as the
improved StyleGAN2 architecture proposed by Perche et al. [24]
We can then interpolate and traverse latent space to seamlessly
generate diverse terrain features and styles [22].

From our user study, we noticed that users require significantly
more actions to modify rather than to sketch (with 96.66 average
actions for modifying, compared to the average of 65.83 actions
for sketching). This shows that users may not be satisfied with
their initial results and tend to make many minor adjustments,
which emphasizes the importance of the editing function. We plan
to conduct additional experiments and interviews to identify the
underlying reasons behind these extendedmodification periods, and
to explore ways to enhance the interaction features for modification.

The pinch gesture is the primary trigger for interactions. Accord-
ing to our user study, this gesture is easy and natural for participants
to use, but brings certain limitations. For example, pinching is the
toggle to switch drawing mode or to save terrain, and to draw
sketches the user needs to pinch and move their hand. The system
might have trouble distinguishing between switching mode and
drawing when the user wants to draw a tiny stroke, because the sys-
tem needs to ignore tiny movements below a certain threshold due
to the fact that hands cannot be perfectly still. As a consequence, it
would be hard for users to make very small adjustments, since any
input action smaller than some threshold will be recognized as a
click action. Some users pointed out that they sometimes triggered
the pinch action or drew undesired strokes by accident. Further-
more, it is difficult to have stable hand gesture recognition when
hands or parts of hands are obstructed. In future work we plan to
enhance our design by introducing new gestures and multimodal
inputs (such as speech) to improve user control and interaction
experience. Also, current VR solutions such as Meta Quest 3 can
have inaccurate hand tracking. To better analyze the impact of this
inaccuracy, we plan to implement more precise alternatives, such
as OptiTrack, for ground truth comparison.

Unlike the Gradient-based method introduced by Guérin [11],
generation result from each contour in our system is computed
independently, so contours will not affect each other if they are
clustered. Instead, one contour may overwrite another. Also, users
may not add weight to a contour by drawing multiple contours
together. This problem will be addressed in our future work.

Some users reported difficulty in accurately determining the
relative position between their hand and their drawings. As a re-
sult, those users found it difficult to pinch on the editable lines or
sketch in the desired position. In the future, we plan to add more
spatial cues to the system to enhance users’ spatial perception of
the drawings. These could include a spatial grid or highlighting a
stroke as the user’s hand approaches, enhancing precision and ease
of use. Our system introduces interactive methods for using a VR
interface to author terrain. In the future, we plan to conduct studies
to learn more about the efficiency and learning affordances of our
system as compared with previous terrain authoring tools.
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